Những câu hỏi liên quan
★彡✿ทợท彡★
Xem chi tiết
Phan Thùy Linh
11 tháng 5 2022 lúc 20:45

\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+......+\dfrac{1}{2x-2}-\dfrac{1}{2x}\right)=\dfrac{3}{16}\)

\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{2x}\right)=\dfrac{3}{16}\)

\(\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{3}{16}:\dfrac{1}{2}\)

\(\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{3}{8}\)

        \(\dfrac{1}{2x}=\dfrac{1}{2}-\dfrac{3}{8}\)

         \(\dfrac{1}{2x}=\dfrac{1}{8}\)

⇒x=8:2=4

Bình luận (0)
ho huu
Xem chi tiết
Nguyễn Trịnh Phú Vinh
3 tháng 10 2023 lúc 18:02

Ta có với x,y,z >0 thì:\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)
Bất đẳng thức Cô si ta có:
\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{x\sqrt{1-x^2}}\ge2\\ \Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\Leftrightarrow\dfrac{x^2}{\sqrt{1-x^2}}\ge2x^3\)
Tương tự: \(\dfrac{y^2}{\sqrt{1-y^2}}\ge2y^3;\dfrac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Từ đó ta có:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\left(dpcm\right)\)
 

Bình luận (0)
Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Ha Hoang Vu Nhat
27 tháng 4 2017 lúc 20:57

Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT

Ta có: \(\left(m-n\right)^2\ge0\)

<=> \(m^2-2m.n+n^2\ge0\)

<=> \(m^2+2m.n+n^2-4m.n\ge0\)

<=> \(\left(m+n\right)^2\ge4m.n\)

=> \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)

a, Áp dụng BĐT côsi ta có:

\(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)

vậy \(\dfrac{1}{x}+x\ge2\) (x>0)

b, Áp dụng BĐT côsi ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0

-----------Chúc bạn học tốt hehe-------------

Bình luận (0)
Hoàng
Xem chi tiết
Neet
25 tháng 8 2017 lúc 22:31

\(\sum\dfrac{x^2+1}{\left(z^2+1\right)+y}\ge\sum\dfrac{x^2+1}{\left(z^2+1\right)+\dfrac{y^2+1}{2}}\)

Bình luận (0)
Lightning Farron
25 tháng 8 2017 lúc 22:38

Áp dụng BĐT AM-GM ta có:

\(y\le\dfrac{y^2+1}{2}\Rightarrow\dfrac{1+x^2}{1+y+z^2}\ge\dfrac{1+x^2}{1+\dfrac{y^2+1}{2}+z^2}\)

Tương tự cho 2 BĐT còn lại thì viết lại dc thành

\(\dfrac{1+x^2}{z^2+1+\dfrac{y^2+1}{2}}+\dfrac{1+y^2}{x^2+1+\dfrac{z^2+1}{2}}+\dfrac{1+z^2}{y^2+1+\dfrac{x^2+1}{2}}\)

Đặt \(\left\{{}\begin{matrix}x^2+1=a\\y^2+1=b\\z^2+1=c\end{matrix}\right.\)\(\left(a,b,c>0\right)\) thì ta có:

\(\dfrac{a}{c+\dfrac{b}{2}}+\dfrac{b}{a+\dfrac{c}{2}}+\dfrac{c}{b+\dfrac{a}{2}}\ge2\)

\(\Leftrightarrow\dfrac{a}{2c+b}+\dfrac{b}{2a+c}+\dfrac{c}{2b+a}\ge1\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a^2}{2ac+ab}+\dfrac{b^2}{2ab+bc}+\dfrac{c^2}{2bc+ca}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+2ab+2bc+2ca}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1=VP\)

Bình luận (1)
caytretinhban
Xem chi tiết
caytretinhban
10 tháng 5 2018 lúc 14:52

Cần gấp, mai thi

Bình luận (0)
ngo tuan duc
10 tháng 5 2018 lúc 15:33

mình ko biết mình làm đúng hay sai bạn nhé, mong mọi người góp ý

= 1/2.( 1/2.4+1/4.6+....+1/(2x-2)2x)=1/8

= 1/2.(1/2-1/4+1/4-1/6+....+1/(2x-2)-1/2x)=1/8

= 1/2.( 1/2-1/2x)=1/8

( 1/2-1/2x)=1/8:1/2

1/2-1/2x=1/4

1/2x =1/2-1/4

1/2x =1/4

2x = 4

x =4:2

x =2

Bình luận (0)
Mai Thành Đạt
Xem chi tiết
yeens
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 3 2021 lúc 22:36

Ta có:

\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{y}{z}+\dfrac{x}{z}+\dfrac{z}{x}\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Ta có:

\(\dfrac{x}{y}+\dfrac{x}{y}+1\ge3\sqrt[3]{\dfrac{x^2}{y^2}}\) 

Tương tự ...

Cộng lại ta có:

\(2\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\right)+6\ge3\left(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\right)\)

\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\)

Do đó ta chỉ cần chứng minh:

\(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

\(\Leftrightarrow\left(\sqrt[3]{\dfrac{x}{y}}-\sqrt[3]{\dfrac{x}{z}}\right)^2+\left(\sqrt[3]{\dfrac{y}{x}}-\sqrt[3]{\dfrac{y}{z}}\right)^2+\left(\sqrt[3]{\dfrac{z}{x}}-\sqrt[3]{\dfrac{z}{y}}\right)^2\ge0\) (luôn đúng)

Bình luận (0)
Mai Huyền My
Xem chi tiết
Vũ Tiền Châu
14 tháng 7 2018 lúc 16:46

Ta có \(\dfrac{1}{1+x}\ge1-\dfrac{1}{1+y}+1-\dfrac{1}{1+x}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\)

\(\ge2\sqrt{\dfrac{yz}{\left(y+1\right)\left(z+1\right)}}\)

Chứng minh tương tự, ta có

\(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(z+1\right)\left(x+1\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(x+1\right)\left(y+1\right)}}\)

Nhân cả 3 cua 3 BĐT cùng chiều, ta có

\(\dfrac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\dfrac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\Rightarrow xuz\le\dfrac{1}{8}\left(ĐPCM\right)\)

Bình luận (1)